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Abstract. The method of Abelian decomposition proposed by Faddeev and Niemi is used to derive the
low-energy effective lagrangian of G2 gauge theory. The G2 algebra is studied. The commutation relations
among the generators of the G2 algebra are established, based on the framework of its regular maximal
subalgebra, an SU(3) algebra.

It is well-known that a Yang–Mills gauge theory at high
energy describes weakly interacting massless gluons and
can be solved perturbatively thanks to asymptotic free-
dom. At low energy, the theory becomes strongly cou-
pled and the method of perturbation fails. Some non-
perturbative techniques have to be developed to tackle
this problem. A quantitative explanation of the problem
is as follows. At low energy, the Yang–Mills gauge theory
exhibits color confinement due to the dual Meissner effect.
The dynamics of this effect will take place when the gauge
theory is Abelian projected to its maximal Abelian sub-
group [1,2]. Consequently, the spectrum of the low-energy
theory would possess massive composites of gauge fields
such as glueballs.

A systematic method of Abelian decomposition that is
used to parameterize the four-dimensional SU(2) Yang–
Mills connection was proposed by Faddeev and Niemi [3]1.
In the decomposition, the parameterized connection con-
tains a set of new variables, which is appropriate for de-
scribing the theory in the infrared limit. It is shown that,
at a certain low-energy phase, the decomposed theory be-
comes the so-called Faddeev–Skyrme model. This model
is known to support topological solutions that can be re-
garded as candidates for glueballs [3,5]. The topological
aspects of the Abelian decomposed model are investigated
in detail in [6]. Moreover, the Hamiltonian structure of the
Faddeev–Skyrme model has been studied and is found to
coincide with a symmetrical top rotating in the SU(2)
space [7]. The generalization of the Abelian decomposi-
tion method to the SU(N) Yang–Mills theory is reported
in [8,9]. Similarly, the method is also extended to the gen-
eral cases of SO(N) and Sp(2N) Yang–Mills theories [10].

In the present letter, the G2 algebra is examined sys-
tematically. The generators are classified based on its reg-
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1 Faddeev and Niemi have also proposed a modified method

of Abelian decomposition for SU(2) Yang–Mills theory. In this
decomposition, the duality of electric and magnetic variables
is explicitly realized [4]

ular maximal subalgebra, an SU(3) algebra. The commu-
tation relations and structure constants of the G2 alge-
bra are established using the same SU(3) symmetry. Af-
ter discussion of the G2 group, we focus our attention on
the Abelian decomposition for the four-dimensional G2
Yang–Mills theory. Twelve gauge covariant one-forms that
determine a basis of roots for the G2 algebra are con-
structed. Using these covariant one-forms and other dual
variables, the G2 gauge connection is completely Abelian
decomposed via the Faddeev–Niemi method. Hence, the
low-energy effective lagrangian of the G2 Yang–Mills the-
ory can be derived straightforwardly.

The rank of the exceptional Lie group G2 is 2 and its
Lie algebra contains 14 generators. Let us denote them
by Tα for α = 1 to 14. On the root-vector diagram, these
14 generators are divided into three categories: two null
roots, six longer roots and six shorter roots. All together,
they form a highly symmetrical diagram, the customary
“Star of David.” The regular maximal subalgebra of G2 is
an SU(3) algebra. It is not difficult to see that under the
action of SU(3), the 14 generators transform like 8⊕3⊕ 3̄.
Based on this fact, we further denote the 14 generators of
theG2 group as follows: the commuting Cartan subalgebra
by Ti for i = 3 and 8, the longer roots by Ta and the
shorter roots by ta, where the subscripts a in both cases
take values in the set (1, 2, 4, 5, 6, 7).

Obviously, under such an arrangement the combined
generators TA = (Ti, Ta) generate the SU(3) algebra. That
is,

[TA, TB ] = i fABC TC . (1)

Here, the fABC (A,B,C = 1 to 8) are the standard SU(3)
structure constants in the Gell-Mann basis and are anti-
symmetric with respect to interchange of any two indices.
Furthermore, from the multiplication law of the SU(3)
generators,

TA TB =
1
2

[
1
3
δAB + (i fABC + dABC)TC

]
, (2)
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we define two sets of matrices (FA)BC = − ifABC and
(DA)BC = dABC . Then the following identities can be
verified:

Fi Dj − Dj Fi = 0 , (3)
Fi Dj + Fj Di − dijk Fk = 0 , (4)

where the subscripts (i, j, k = 3, 8) are those in the Cartan
subalgebra.

In order to establish the other commutation relations
neatly among the generators Tα = (Ti, Ta, ta), we have to
deal with the shorter roots ta appropriately. We notice
that with the Cartan generator T3 (T8) on the root-vector
diagram representing the symmetrical axis for the longer
roots, the other generator T8 (−T3) would serve in a sim-
ilar role for the shorter root system. This simple observa-
tion enables us to determine the rest of the commutation
relations. They are

[Ti, ta ] = − i√
3
εij fjab tb , (5)

[ ta, tb ] =
2i√
3
fabc tc +

i√
3
fabi εij Tj + i gabc Tc , (6)

[ ta, Tb ] = −i gacb tc , (7)

where εij is the Levi-Civita tensor with ε38 = −ε83 = 1.
In the above equations, (5), (6) and (7), we introduce

one more structure constant gabc, in addition to the SU(3)
counterparts fabc and fabi. The gabc are antisymmetric
with respect to interchange of the first two indices, that
is, gbac = −gabc. The non-zero constants are listed below:

g147 = 1/2, g156 = −1/2,
g174 = −1/2, g165 = −1/2,
g246 = −1/2, g257 = −1/2,
g264 = 1/2, g275 = −1/2, (8)
g462 = 1/2, g471 = 1/2,
g561 = 1/2, g572 = −1/2.

It is stressed that both structure constants, fabc and gabc,
have non-vanishing elements with the same subscript la-
bels. There are various relations among the structure con-
stants. For example, we have the summation identities

gcda gcdb = δab and fcda gcdb = 0 . (9)

We also list some of the relations derivable from the Jacobi
identities below

fabd gcde − facd gbde + fbcd gade = 0,√
3 gabd fdcj εji + gadc fbdi − gbdc fadi = 0, (10)
1√
3
εij fabj fice + gabd fcde + gadc gbde − gbdc gade = 0.

Let us briefly restate what we have shown regarding
the G2 algebra. The 14 generators (Tα for α = 1, · · · , 14)
of the G2 group are classified into three parts: Ti, Ta, and

ta. These generators satisfy the commutation relations (1),
(5), (6) and (7), and are normalized to

Tr (TαTβ) =
1
2
δαβ . (11)

As a result, a generic G2 Lie-algebra element v has an
expansion in terms of the generators as follows: v = vi Ti+
va Ta + ṽa ta.

Now, we are readily to generalize the method of Abelian
decomposition for the G2 Yang–Mills connection one-form

A = Aµ dxµ =
(
Ai

µ Ti +Aa
µ Ta + Ãa

µ ta

)
dxµ. (12)

Following the decomposition procedures presented in [9,
10], we first conjugate the elements of the Cartan subalge-
bra Ti by a generic element g ∈ G2 to generate Lie-algebra
valued vector fields:

mi = g Ti g
−1, (13)

where i = 3, 8. The fields mi depend on 12 independent
variables, since they remain invariant if g transforms by
g → gh, for h belongs to the U(1)2 subgroup of G2.

We then want to parameterize the connection one-form
A using the fields mi defined in (13). According to Cho’s
prescription [11], the connection one-form (12) admits this
decomposition:

A = Cimi +
1
i

[ dmi,mi ] + (covariant part), (14)

where Ci for i = 1, 2 are Abelian connection one-forms. In
the decomposition (14), the first two terms by construc-
tion preserve the full G2 gauge characteristics. Hence, the
variables appearing in the (covariant part) must transform
covariantly under a G2 gauge transformation.

As a matter of fact, the decomposition formula (14)
can further be simplified into a more elucidated expression
[9]. The simplification procedure is shown below. If we
introduce the Maurer–Cartan one-form

R =
1
i
g−1 dg

= Ri Ti +Ra Ta + R̃a ta, (15)

where g ∈ G2, then the equation (14) can be rewritten
using (13) as

A = g A g−1 +
1
i

dg g−1. (16)

Here, the field A is another G2 connection one-form that
is gauge equivalent to the original one-form A (14). Ex-
plicitly, it takes the form

A =
(
Ci −Ri

)
Ti − 2

3
R̃a ta + (C.P.), (17)

where (C.P.) = g−1(covariant part)g.
Note that the (C.P.) space coincides with the orbit

G2/U(1)2, and its local basis is spanned by 12 indepen-
dent gauge covariant Lie-algebra valued one-forms. In ad-
dition, these covariant one-forms need to be orthogonal to
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the Cartan subalgebra Ti. To be more specific, we notice
that the commutator [R, Ti] is a gauge covariant one-form
and is also orthogonal to the Cartan generator Tj , because
Tr ([R, Ti]Tj) = 0. Thus, the commutator [R, Ti] can be
regarded as a part of the basis states of the (C.P.) space.
Once a covariant one-form that determines a part of the
basis states is found, the entire basis states can be deter-
mined by applying the adjoint action

δi v = [ v, Ti ] (18)

to that covariant one-form successively. v is an arbitrary
Lie-algebra valued element.

What are the 12 covariant Lie-algebra valued one-forms
that span the root G2/U(1)2? It is found that these covari-
ant one-forms have much nicer expressions if we purposely
separate the commutator,

[R, Ti ] = Ra (Fi)ab Tb − 1√
3
R̃a εij (Fj)ab tb , (19)

into two independent one-forms, denoted by Xi and xi,

Xi ≡ Ra (Fi)ab Tb , (20)

xi ≡ − 1√
3
R̃a εij (Fj)ab tb . (21)

Then, as mentioned in the above paragraphs, the use of the
adjoint action (18) respectively on the Xi and xi should
render the entire basis states for the (C.P.) space. After
some computations, we find that [9]

δjXi = Zij , (22)

δkZij =
1
3

( δik Xj + δjk Xi)

−1
4

( dijl dlkm − dikl dljm − djkl dlim)Xm

−1
4

( dijl Ylk + dikl Ylj + djkl Yli) , (23)

δkYij = djkl Zil − dikl Zjl, (24)

and

δjxi = zij , (25)

δkzij =
1
9

( δik xj + δjk xi)

− 1
12

( dijl dlkm − dikl dljm − djkl dlim)xm (26)

− 1
12

( dijl εlm ymk + dikl εlm ymj + djkl εlm ymi) ,

δkyij = djkl εlm zim − dikl εlm zjm , (27)

where (3) and (4) have been used. BesidesXi and xi, there
are four extra one-forms Zij , Yij , zij , and yij in the above
equations. Their explicit expressions are

Zij = Ra (Fi Fj)ab Tb, (28)
Yij = Ra (Fi Dj − Fj Di)ab Tb , (29)

zij =
1
3
R̃a(F̃k F̃l)ab tb , (30)

yij = − 1√
3
R̃a(F̃k D̃l − F̃l D̃k)ab tb , (31)

where we define (F̃i)ab = εij(Fj)ab and (D̃i)ab =εij(Dj)ab.
The outcome is that we get two independent subsets

of Lie-algebra valued one-forms (Xi, Zij , Yij) and (xi, zij ,
yij). Each of these separately forms a closed subalgebra
under the adjoint action (18). These one-forms possess
definite properties under the SO(2) symmetry. For exam-
ple, the one-forms Xi and xi yield the SO(2) vector repre-
sentation, Zij and zij the SO(2) symmetric tensor repre-
sentation, and Yij and yij the SO(2) antisymmetric tensor
representation, i.e., the scalar representation. Accordingly,
the number of independent components carried by the first
set of one-forms (Xi, Zij , Yij) is 6, whereas the number
carried by the second set (xi, zij , yij) is also 6. The sum
of independent one-forms in these two sets is 12, which
matches the dimension of the space G2/U(1)2. Thus, the
one-forms (xi, zij , yij) and (Xi, Zij , Yij) can be used to
parameterize the basis states of the (C.P.) space. Conse-
quently, Ti, (xi, zij , yij) and (Xi, Zij , Yij) all together yield
a complete set of basis states for the G2 Lie algebra.

To proceed to the complete decomposition of the G2
connection (17), we need appropriate dual variables that
appear as coefficients to the one-forms (xi, zij , yij) and
(Xi, Zij , Yij). We observe that the Yang–Mills connection
A in (17) is a G2 Lie-algebra valued one-form and trans-
forms in the scalar representation of the SO(2) symme-
try. So, to form invariant combinations, the dual variables
must be the Lie-algebra valued zero-forms and transform
in the same SO(2) representations as the associated co-
variant one-forms. Let us denote the dual variables by
(φij , ψij) and (Φij , Ψ ij). Then the G2 gauge field Aµ (17)
admits this Abelian decomposed expression:

Aµ ≡ Ai
µ Ti + Ã

a

µ ta +Aa
µ Ta

=
(
Ci

µ −Ri
µ

)
Ti

+ R̃a
µ

((
φij − 2

3
δij

)
(F̃i F̃j)ab + ψij(F̃i D̃j)ab

)
tb

+Ra
µ

(
Φij(Fi Fj)ab + Ψ ij(Fi Dj)ab

)
Tb , (32)

with (F̃i F̃i)ab = δab. Here Φij and φij are dual to the one-
forms Zij and zij , respectively. Ψ ij is dual to the one-forms
Xi and Yij , and similarly ψij is dual to the xi and yij . Both
duals, Ψ ij and ψij , decompose respectively into a vector
and an antisymmetric tensor under SO(2) symmetry. It
is noted that the Abelian decomposed gauge field (32)
contains the correct number of independent variables, and
can be used for describing the G2 gauge theory in the
infrared limit.

Using (32), the G2 field strength tensor under the
Abelian projection reads

Fµν = ∂µAν − ∂νAµ − i
[
Aµ, Aν

]
=

[ (
Ci

µν −Ri
µν + fiabA

a
µA

b
ν

)
δij

+
1√
3
fiab εij Ã

a

µ Ã
b

ν

]
Tj
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+

[
(D̃µ)ac Ã

a

ν − (D̃ν)ac Ã
a

µ +
2√
3
fabc Ã

a

µ Ã
b

ν

−gacb

(
Ã

a

µA
b
ν − Ã

a

ν A
b
µ

) ]
tc

+

[
(Dµ)acA

a
ν − (Dν)acA

a
µ + fabcA

a
µA

b
ν

+gabc Ã
a

µ Ã
b

ν

]
Tc , (33)

where Aa
µ and Ã

a

µ are given in (32). In addition, we denote
Ci

µν = ∂µC
i
ν − ∂νC

i
µ and Ri

µν = ∂µR
i
ν − ∂νR

i
µ. The U(1)

covariant derivatives in (33) are defined as

(Dµ)ab = ∂µ δab + fiab

(
Ci

µ −Ri
µ

)
,

(D̃µ)ab = ∂µ δab − 1√
3
fiab εij

(
Cj

µ −Rj
µ

)
. (34)

Therefore, the low-energy effective lagrangian of the
G2 gauge theory is ready to be written down if we sub-
stitute the decomposed field strength tensor (33) into the
Yang–Mills theory, LG2 = (1/2g2) Tr(FµνFµν). Here, g
is the Yang–Mills coupling constant. The resultant low-
energy lagrangian will become a non-renormalizable the-
ory involving various fields, such as Ci

µ, Ra
µ, Ψ ij , φij , etc.

However, we shall not present this lagrangian in any de-
tail. Instead, we are interested in a particular low-energy
phase of this non-renormalizable lagrangian. To this aim,
let us consider the dynamical fields Ri

µ, Ra
µ, and R̃a

µ liv-
ing in the classical field backgrounds 〈Ci

µ〉 = 0, 〈Φij〉 =
〈Ψ ij〉 = 〈ψij〉 = 0, and 〈φij〉 = (2/3) δij . Then these clas-
sical fields can be properly integrated out with the con-
ditions 〈∂µΦ

ij∂νΦ
lk〉 ∼ 〈∂µΨ

ij∂νΨ
lk〉 ∼ 〈∂µφ

ij∂νφ
lk〉 ∼

〈∂µψ
ij∂νψ

lk〉 ∼ gµν . After performing the field integra-
tion, the theory takes the form

LG2 = M2Ra
µR

a
µ +m2 R̃a

µR̃
a
µ +

1
4g2

(
∂µR

i
ν − ∂νR

i
µ

)2
,

(35)
where M and m are some constants with the dimension
of a mass. The model (35) indeed represents the G2 gen-

eralization of the original Faddeev–Skyrme model and is
believed to be relevant to the infrared limit of the G2
Yang–Mills theory. It would be interesting to understand
the detailed structure of the model.

In conclusion, we have systematically studied the G2
algebra based on the structure of its regular maximal
subalgebra, an SU(3) algebra. The structure constants
of the G2 algebra are established neatly using the same
SU(3) symmetry. We have also derived the low-energy
lagrangian of the G2 gauge theory using the Abelian de-
composition method proposed by Faddeev and Niemi. The
low-energy theory is shown to be the G2 generalization of
the Faddeev–Skyrme model.
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